« Newer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Older »

First gameplay

I had hoped that the editor would allow me to quickly test gameplay concepts by using “soft rules”: rules that are communicated to the tester verbally by me, instead of being enforced by the program. For example, I could say “Now try moving the orange ball into the blue rectangle, but only moving the green blocks.”

Continue reading

Stam solver working

This week I worked hard on getting the fluid solver in the style of Jos Stam working. The basics were easy enough, but Stam makes some simplifying assumptions, so the continuation was not quite trivial. But combined with what I learned in my earlier work on the free-surface simulator, I managed to put together a fast, stable, flexible and pretty fluid solver that I’m more than a little proud of.

Continue reading

New approach

From my previous posts, it must now be clear that free-surface fluid dynamics is hard. This is mainly caused by the free surface. Without that, it is possible to write a fluid-in-a-box in a little over 100 lines of C code, as Jos Stam did in his paper Real-Time Fluid Dynamics for Games. However, I could not go down that road. I needed the free surface. I wanted my game to have waves, droplets, splashes, sprays, fountains! How these would make a game, I would figure out after I got the simulation to work.

Continue reading

Fluid solver on the GPU

Work on this project has been standing still for some time while I was working on another project. But this week I picked up work where I left off: making the fluid simulation even faster. Since the SOR solver I was using lends itself well to parallelization, and video cards are good at running parallel programs, I tried to run the solver on the video card (GPU).

Continue reading

Optimization story

The fluid simulation was beginning to approach results of decent quality. However, it was still far too slow. Most of the screenshots I’ve shown so far were done on a 64x64 grid, which barely ran in real-time even on my fast Intel i7 machine. For a full-screen game, I’d need at least 128x128 and preferably 256x256. As I noted before, a doubling of the grid size requires about ten times as much computational power. Clearly, some optimizations were in order.

Continue reading

« Newer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Older »